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Particle detectors in Rindler and Schwarzchild space-times 
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Received 10 November 1982 

Abstract. It is shown that a particle detector coupled to the derivative of a scalar quantum 
field can be viewed as a bona fide ‘particle detector’. The response of such a detector is 
compared with that of a linearly coupled monopole (DeWitt) detector when both are 
placed in each of three situations: an isotropic particle bath, in Rindler space, and in 
Schwarzschild space. From their responses it is shown that there is a fundamental difference 
in how these two detectors behave. As a result, the use of particle detectors to support 
the close links between quantum field theory in non-Minkowskian spaces and thermal 
physics is shown to be in need of deeper consideration as is the general role of particle 
detectors in this theory. 

1. Introduction 

Over recent years, the work of DeWitt (1979), Unruh (1976), Candelas (1980) and 
others has demonstrated that the response of certain particle detector models supports 
the apparently close links between quantum fields in non-Minkowskian spaces and 
thermal physics (see Sciama ef a1 1981). 

In particular, Unruh demonstrated that a simple omni-directional detector when 
placed at a fixed distance outside a black hole would respond as though immersed in 
a bath of thermal radiation. Also, it was shown by Unruh and DeWitt that a similar 
detector undergoing uniform acceleration would likewise respond as though immersed 
in a bath of thermal radiation. (Recently it has been found that, in this latter case, 
the bath is not isotropic. See Hinton et a1 (1982).) 

In all the cases cited above, the interaction Lagrangian for the particle detector 
was a simple linear monopole interaction 

(1) 

where m ( x )  is the monopole moment of the detector (which has some quantised 
internal degree of freedom allowing it to be excited out of a ground state), 4 [ x ]  is 
the scalar field and c’  a small coupling constant. 

This is not the only form of coupling, however, which can be used to construct a 
particle detector. We shall see below that we may also use 

L i n t  = c’m ( X  )4 [ X  1 

Lint = cm”(x)a&[x] (2) 

with a ,  =a/dxWL,  which we shall call a derivatively coupled detector. In this case m*(x)  
is a dipole moment which can be oriented spatially in a variety of ways by a co-moving 
observer with the detector. 
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Using a criterion introduced below, we shall see that not only is the derivatively 
coupled detector a bona fide particle detector, but further, with such a detector, nexus 
demonstrated by the works cited above is apparently broken. 

2. Definition of a particle detector 

Following the lead of Unruh and DeWitt, we shall define a particle detector to be a 
mathematical construct which registers the occupation number of any given mode. 
The detector described by (1) (which we will call a ‘DeWitt detector’) satisfies this 
definition since immersion of such a detector in an isotropic particle bath characterised 
by occupation number nk gives a transition probability per unit detector time, W, of 
(Birrell and Davies 1982) 

-W = c”I(Elm ( o ) I E ~ ) ~ ~ ~ ~ - ~ ~ ~ ~ - ~ ) ’ ~  (E’ - m  ) 

where n is the dimension of the (Minkowski) space-time, m is the mass of the field 
4[x],  and E labels the energy levels of the excited states of the detector. So, for a 
given energy level, the transition rate is proportional to the number of quanta in the 
mode of interest. 

We now repeat this calculation, with some detail, for the derivatively coupled 
detector. We shall follow the approach utilised by Birrell and Davies (1982). To 
first-order perturbation theory, the transition amplitude for a transition of the 4[x]  
field from (vacuum) state to excited state 14) and similarly for the detector m,(T) 

from (ground) state [Eo) to excited state IE) for a given trajectory X(T) of the detector 
( T  being the detector’s proper time) is 

2 (n-3)/2 
n(E2-m2)i/2e(E - m ) / r [ ( n  - 1)/2)] 

(3) 

ic(E, $ 1  dTm@(T) ~ , ~ [ X ( T ) I ~ $ O , E O ) .  
-W 

We assume that the time evolution equation of the detector, in its own rest frame, is 
m fi  ( T )  = eiH”Tm , (0) e-’%‘ where HolE) =EIE).  So, we may write for the transition 
amplitude 

From this we can evaluate the transition probability, P, of the detector to an excited 
state IE). 

P = cZ(EIm’(0)/Eo)*(Elm”(O)IEo)9(E  EO)^^ 

where 
m W 

F(E),, = [ dT d7’ a, a:(1~~l4[~ (d14 [X (~‘)11$~) ( 5 )  
-a 

where a:= d/ax‘“ and FWv is called the response function. Note that Fwy is not a tensor; 
the p, v refer to directions in the detector’s rest frame. If I$o) is taken to be a vacuum 
state, such as the Minkowski vacuum IO,), then (tLo14[x (T! ]~ [x  (T) ] /$~)  is replaced by 
the (appropriate) positive frequency Wightman Green function G+(x, x’). Using (4) 
or ( 5 )  to evaluate the response of this detector to an isotropic particle bath characterised 
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by nk as above, we find for the response functions per unit time 

$(E)oo/T = 22-nTy(3-n)’2 ( E 2  - 2)‘n-11/2 n(E2-m2)1/2e(E - - m ) m n  - 11/21, 

where cos Bi is the angle between the space-like direction defined by “(0 )  and the 
space-like component of the n-dimensional momentum vector, and the integral is 
over the (n  -2)-sphere of directions in ( n  - 1)-dimensional space. (For n = 2 the 
angular integral is set to 2.) 

From (6) we can see that as with the DeWitt detector, this detector’s transition 
rate will be proportional to the occupation number for a given energy level. So, the 
derivatively coupled detector can be justifiably considered a ‘particle detector’. 

3. Detectors in Rindler space 

We now can compare the responses of the two detectors in Rindler space (i.e. 
undergoing uniform acceleration). 

Firstly, we consider two-dimensional Rindler space, defined by Pfautsch (1 98 1) 

t = 5 cosh +, z = 5 sinh +, (7) 
and the proper time is 7 = (?. The appropriate Green function is (Birrell and Davies 
1982) 

G+(x, x ’ )  = - (1/4r2)  ln{4t2 sinh2[(A?/2) - (ie/2()]} (8) 

where kT = 1/27r[, which is identical to the response of such a detector in a thermal 
bath of radiation at the appropriate temperature. In all cases the transition rate is 
per unit detector time. Repeating this calculation for the derivatively coupled detector 
by using (3, we find 

(10) 

(11) 

-Woo = c ’ / (E  I m O( O)lEO)l2 (E - Eo)/ (e ‘ E  -Eo)’kT- 11, 

bwl1 = c 2 / ( ~ l m  ‘ (o )~E , ) (~ (E  -EO)/(e(E-Eo)’kT- 1 ), 

-WO* = -w,o = 0,  

where in (10) we have coupled the detector to the proper time derivative of the field 
and in (1 1) to the local space derivative of the field (i.e. &). 

From (6) we see that in the two-dimensional case, a derivative detector in Rindler 
space responds as though it were in a thermal bath of radiation with T = 1/27r,5k. So, 
the DeWitt and derivatively coupled detectors agree in this situation. However, if 
we now consider the four-dimensional Rindler space we find that this concurrence 
does not carry over. 
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To consider the four-dimensional case, it is more convenient to use (4) rather than 
the Green function approach of ( 5 ) .  The scalar field equation in Rindler coordinates 
can be written as (Pfautsch 1981) 

with mode functions 

(12) 

where Ki;(Qt) is a Macdonald function, Q2 = k:+k: and 3 > O .  Expanding 4 in 
terms of these Rindler modes and Rindler creation and annihilation operators, a&, 
U R  and using the Bogoliubov transformation to Minkowski operators a L, uM 

1/2  e-iG+ 2 
~ R ( x ,  3, kl, k2) = (sinh 7 ~ 3 )  '' 'Ki; (Qt / 2 7~ 

uR(6, kl,  k 2 )  = d3k' [27zo'(l - e - 2 1 1 ~ ) ] " 2 [ ( 0 ' + k ; ) / Q ] ' ' S ( k ~ - k I ) S ( k 2 - k ~ )  J 
x [aM(k i, k;, k;) + e--'u $(k I, k;, k j)] 

where U' *  = k i 2  + ki2  + ki2, we obtain for the DeWitt detector a transition rate per 
unit detector time 

(13) 

with kT = 1/27r5 as usual. In evaluating (13) we have discarded a logarithmic diver- 
gence characteristic to these calculations since the detector is perceiving a constant 
flux of radiation over all proper time T .  

Repeating these calculations using (4) we find, after discarding an identical logarith- 
mic divergence, that a detector coupled to the (proper) time derivative of the field 
has a transition rate of 

-W = c f 2 1 ( ~ / m  ( o ) / E , ) ~ ~ ( E  - ~ ~ ) / 2 7 T ( e ' ~ - ~ o ) ' / ~ ~ - -  1) 

-woo = C ~ ~ ( E ~ ~ ~ ( O ) ( E ~ ) I ~ ( E  - E O ) ~ / ~ ~ T ( ~ ( ~ - ~ O ) / ~ ' -  1). (14) 

For a detector coupled to a space-like direction perpendicular to the direction of 
acceleration (i.e. the x or y directions), the transition rate is 

-WLi = C ~ ~ ( E ~ ~ ' ( O ) ~ E ~ ) / ~ ( E  -Eo)[l + ( E  - E o ) 2 t 2 ] / 6 ~ t 2 ( e ' E - E o ) / k ? _  11, 
(15) 

For a detector coupled to the space-like direction parallel to the direction of acceler- 
ation (i.e. locally the t direction) 

i = 1,2. 

* w ~ ~  = C * ~ ( E ~ ~ ~ ( O ) I E ~ ) ~ ~ ( E  - ~ ~ ) ( 4  + (E - ~ ~ ) ~ " ) / 3 7 ~ 5 ~ ( e ' ~ - ~ " ' / ~ ' -  1). (16) 

Finally, there is now a cross term which appears if the detector is coupled to both the 
T and 6 derivatives (i.e. local time and direction of acceleration derivatives). This 
term is 

1). (17) 

In (14) and (17) we have k T  = 1/27r5. Referring to (6 )  we can see that only for 
coupling to the T derivative does this detector give a thermal response. Furthermore, 
for such a detector which couples to space-like derivatives, different orientations of 
the detector will give different (non-Planckian) responses. 

WO3 + W30 = c 2  I~((EI~~(O)IE~)*(E/~O(O)IE~))(E - ~ 0 ) ~ / 2 7 ~ 5 ( e  ( E - E , ) I k T -  
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4. Detectors in Schwarzschild space 

We find a similar situation to the above occurring for these two detectors placed in 
Schwarzschild space-times. We use the Hartle-Hawking Wightman Green function, 
which for a two-dimensional black hole is (Birrell and Davies 1982) G & =  
-(l/4.rrz) ln[(Aii -ie)(Afi -ie)], where 

c = - e  -K"/K, B = eKv/K 

with K = 1/4M, the surface gravity of the black hole, and 

u =t- r* ,  u = t + r * ,  r* = r + 2 M  In[(r/2M) - 13. 

The Hartle-Hawking vacuum is defined with respect to the U, v coordinates, hence 
we find G&(x, x ' )  = -(1/4.rr2) ln{4e2'*'K sinh2[(At/2K)-ie]/K2} which in turn gives 
for the DeWitt detector a transition rate per unit proper time of (Birrell and Davies 
1982) 

where 
w = c ' ~ I ( E ~ ~ T I  ( O ) ~ E , ) ~ ~ / ( E  -EO)(e'E-Eo)/kT- 1) 

kT = [64.rr2M2(1 - 2M/r)]-'". 

(18) 

(19) 

WlO = -WO1 = 0, 

with kT given by (19). 
As with the two-dimensional Rindler space, both detectors give a thermal response. 

We now consider the four-dimensional Schwarzschild space. In this case the appropri- 
ate Wightman Green function is (Candelas 1980) 

m 

G&(x, x' )  = 1 I dw[e-""-"' yfm(e, c p )  YT, (e ' ,  cp')&(w Ir)/df (w lrf)/(l - e-Z7ro/K ) 
f,m -w 

+,io(t-r')y* ( 
fm 8, cp 1 Yf,,, (e', cp')R %J Ir (w I f ) /  (e Z w w / K  - 1 )1/4.rrw (22) 

which for the DeWitt detector gives for the transition rates per unit proper time in 
the asymptotic regions 

w = c"I(Elm ( O ) ~ E ~ ) ( ' ( E  - ~ ~ ) / 2 . r r ( e ' ~ - ~ o ) / ~ ~ -  I), r+2M, (23) 

w = c"I(Elm ( o ) ~ E ~ ) ~ ~ ( E  -~ , , ) /2 . r r (e '~-~o ' '~~-  I), r + m ,  (24) 

with kT given in (19). 
Repeating for the derivatively coupled detector we find 

woo = c '1 (E I m ' (0 )  I E ~ ) ~ ~ ( E  - E,,)~/ 2.rr (e(E 

woo = C ~ I ( E ~ ~ ~ ( O ) I E ~ ) ~ ~ ( E  - ~ ~ ) ~ / 2 . r r ( e ( ~ - ~ o ) / ~ ~ -  11, r + m .  (26) 

- I ) ,  r + 2M, (25) 

To evaluate the radial-derivative component of the responses, we adopt the procedure 
used by Candelas (1980), and find (see the appendix) 

a' * 1 (21 + l)dl(wIr)dT(wlr')lr=,, - (1 + 1 6 M 2 ~ Z ) ~ z / 3 M 2 ( 1  -2M/r) 
ar *ar*' =o r-ZM 
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and 

giving 

Wll = c’)(Elm’(O)IEo)l2(E - E d 2 4 r M  (e 

Wll =~’1(Elm‘(O)lE~)l~(E-E0)~/6rr(e 

we are interested in are 

I > ,  r -+ 2M, (27) 

I ) ,  r + m .  (28) 

We now consider the angular-derivative transition rates. From (22) the quantities 

2 ( E - E , ) / k T -  

( E  -Eo)/ k T -  

We find (see the appendix) 

r-’ f 1(1+ 1)(21+ 1)181(olr)12 - 6(1+  1 6 M 2 0 ’ ) ~ ’ / M 2 ( 1  - 2 ~ V / r ) ~ ,  (31) 
I=O r+2M 

The factor of sin-* 6 in (30) occurs due to the coordinate singularities which occur at 
the poles of the spherical coordinate system. By spherical symmetry, we can see that 
(29) and (30) are, in fact, making the same statement, hence we only need consider 
the @-derivative component of the response. From ( 3 1 )  and (32) we have 

r-’Wz2 = c21(Elm2(0)IE0)1’(E -Eo) /96rM2(1  - 2M/r)(e(E-E0)’kT- 11, r + 2M, 
(33) 

r-’Wzz = c ’[(Elm 2(0)lEo)Iz(E - E o ) 3 / 6 ~ ( e i E - E 0 ) ’ k T -  11, r + m ,  (34) 

and we also have 

( r  sin e)-’w3, = r - 2 ~ 2 2 .  ( 3 5 )  

Finally, we evaluate the cross-terms. Since 

we have no cross-terms involving 8 or cp derivatives. However, we find we do have 
a cross-term involving the t and r* derivatives. Again, following the same approach 
as before, we find for the total cross-term, 

WO1 = W,O = 0,  r-,cO, (36) 

x ( E I ~ O ( O ) I E O ~ ) / ~ ~ M ( ~  

wo1 -t wl0 = C’(E -EO)’ Im((Elm ’ (o) (E~)*  

11, r + 2M. (37) ( E - E o ) / k T -  



Particle detectors in Rindler and Schwarrchild space-times 1943 

5. Conclusions 

Before proceeding with any conclusions, it should be noted that the derivatively coupled 
detector is not a directional detector in the sense of the ‘bi-cone’ detector introduced 
in Hinton et a1 (1982). Although the derivatively coupled detector has a directionality 
in its coupling to the field, it is still receptive to the full two-sphere of directions of 
modes in momentum space. By contrast, the bi-cone is shielded from some of these 
mode directions. Hence, just as the DeWitt detector effectively responds to the 
average of the modes over the two-sphere of directions, so does this derivative detector 
similarly take such an average. (If we did restrict the directions in momentum space 
accessible to the derivatively coupled detector-i.e. a derivatively coupled bi-cone 
detector-we would find, in Rindler space, a similar directional dependence as for 
the bi-cone.) 

With this in mind, we can now see that just as the DeWitt detector is omni- 
directional, so is the derivatively coupled detector, once we are given the component 
of the derivative of the field to which it is coupled. So, just as the linearly coupled 
detector responds a5 though it were in an isotropic bath of radiation of a given spectrum 
nk, we can make a similar statement about the derivatively coupled detector. Further- 
more, using ( 5 )  and (6), we can compare these perceived baths of radiation. 

Using these two equations, we find the following: 
(i) in two-dimensional space-times, both detectors agree as to what they observe 

in all three situations (i.e. isothermal bath, Rindler space and Schwarzschild space). 
However, in four dimensions, 

(ii) the DeWitt detector and time-like-derivatively coupled detector agree in all 
three situations; 

(iii) the DeWitt detector and space-like-derivatively coupled detector do not agree 
in all three situations; 

(iv) in the Schwarzschild space-time, in the region r --p 00, both detectors respond 
to the Hartle-Hawking vacuum as though immersed in an isotropic bath of Planckian 
radiation. Moving toward the event horizon ( r  = 2M),  the DeWitt detector responds 
as though in a bath of Planckian radiation of ever increasing temperature. On the 
other hand, the derivatively coupled detector perceives non-Planckian radiation. 

(v) Comparing the time-like and radial components (Woo, Wll and Wlo) with the 
angular components ( W2* and W33)  of the derivatively coupled detector’s response, 
we note that although the former diverge as r+2M due to the Planck factor, the 
latter diverge more vigorously due to the presence of the extra factor, (1 - 2M/’r)-’. 
In addition, from (6) we can also see that 

(vi) given the different components of the derivative of the field to which the 
derivatively coupled detector can be coupled, the response of this detector is orienta- 
tion dependent. 

Accepting that both detectors are bona fide ‘particle detectors’, we are now faced 
with the dilemma of two detectors giving different information when placed in identical 
situations. To reconcile this, we must introduce the concept of ‘particle detector 
equivalence’ which will be the topic of a forthcoming paper. Also, we must look in 
greater detail at how these detectors work. For example, it is known from the 
Bogoliubov transformations that the Minkowski vacuum is a thermal state of finite 
temperature with respect to the Fulling (i.e. Rindler space) vacuum (Pfautsch 1981). 
Although the Bogoliubov coefficients are directionally dependent, the linearly coupled 
detector responds as though it is an isotropic thermal state and the derivatively coupled 
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detector need not even perceive it as Planckian. To appreciate the reasons for this 
difference we must look at how these detectors average over Bogoliubov transforma- 
tions. 

Obviously there are not only other ways of coupling to the scalar field (e.g. 
~ ( x ) c $ ( x ) ~ )  but also a variety of interaction Lagrangians available to us when 
detecting higher spin fields. Further, we could relax our definition of a particle detector 
by only requiring that its response uniquely determine the particle spectrum nk. Thus 
we see that the question of particle detector ‘equivalence’ spans not only the various 
detectors of a given quantum field, but also those of other fields. 

Finally, there is also the question of extended detectors. In the above we only 
considered infinitesimal point detectors, and the extension of these results to extended 
detectors may be far from trivial (Grove and Ottewill 1981). 
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Appendix 

We shall calculate the quantities 

for r -P m, (AI) 
a2 m 

ar* ar*‘ I = O  
1 (21 + l)RT(wJr)Rer(wlr’)lr=r, 

for r + 2M. 

Following the approach of Candelas (1980), we note that we can write 



Particle detectors in Rindler and Schwarzchild space-times 1945 

For (A2) we use the result that to leading order we have 

2 (21 + l ) @ l ( u l r ) ~ ~ ( w l r ’ )  - (2/M21‘(iq)r(-iq)) [ dl IKiq(21~1’”Kiq(21~’’’2) 

where q = 4Mo and Q = (r/2M) - 1. By use of the chain rule, the quantity we desire 
is 

m 

1 =o r+2M 0 

= (4+q2)T(1 +iq)T(l  -iq)/96a3 

which gives 

a’ 1 (21 + l)Rl(oIr)RT(wIr’)lr=r, - (1 + 16M202)02/3M2(1 -2M/r). (A4) ar* ar*’ 1 - 0  r-2M 

Next, we evaluate the angular derivatives of the Hartle-Hawking Green function. 
The quantities we seek are 

(a2/r2ae ae’)G&(t, r, 8, cp; t’, r, e‘, cp)le=e’ 

(a2/r2 sin2 e acp acp’)GL(t, r, e, cp; t ’ ,  r, e, cp’)l+,=+,,. 
and 

Using (22) and 
I 

m=-1 
(a2/ae ae’) 1 x $ ( e ,  Q)Yml(e’, Q) le=e ’  = 1(1+  1)(21+ 1 ) / 8 ~  

we see we must evaluate 

Using spherical symmetry, we can write 

(a2/r2aeae’)G&, r,  8, Q ;  0, r, e’, q ) ( e = e ’  - l /2r2t4;  
r-+m 

hence, following exactly the same approach as above, we get 

For the other limit, we have, to leading order 

r-’ f Z(l+ 1)(21+ l ) l & ~ ( w l r ) ( ~  - (2M4r(iq)I‘(-iq))-’ [ dl f3Kib ( 2 h  ’”) 
m 

I = O  r-ZM 0 

= 2(1+ 16M2w2)w2/3M2(1 -2Mlr)’. (A61 
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